HOW Al WILL CHANGE THE expleo)
SOFTWARE DEVELOPMENT LIFE CYCLE""

e — (2)--

Design and

architecture .
Coding and

Planning and
implementation

requirement analysis

1
1
1
|
1
1
1
|
Al can assist software architects and software :
engineers in automating legacy code analysisto |
map dependencies, suggest a refactoring :
approach for transitioning fromm monolithic :
|
1
1
1
|
1
1
1
|
1
1
1
|

| 1
1 1
1 1
1 1
| 1
1 1
| 1
I . 1
i Large Language Models (LLMs) can assist I
| business analysts or product owners in :
| reviewing requirement documents to identify :
i ambiguities and inconsistencies. At the same |
| 1
I 1
| 1
1 1
| 1
I 1
| 1
1 1
| 1
I 1
| 1
1 1
| 1

Developers are shifting from hand-coding to
vibe coding (co-creation), where tools like
GitHub Copilot and Cursor generate entire

1
1
1
1
1
1
1
1
1
1
systems to a microservices architecture, and :
1 o
| software components (from architecture and
1
1
1
1
1
1
1
1
1
1
1
1
1

simulate architecture to evaluate scalability,
performance, and security trade-offs before

time, predictive analytics can identify coding

potential risks in scope definition based on
historical project data.

logic to interfaces and documentation) from

natural language prompts. However, agentic
coding (Al autonomy) is expected to become
mainstream shortly.

Testing and
quality assurance

: o -
and production AC) @

|

1

|

I

|

1

' Al can help quality analysts generate
: Al can help DevOps engineers automate s ¥ e
| the generation of Infrastructure-as-Code Fm——-e- '

I

|

1

|

I

|

1

|

I

|

1

1 I
I I
1 I
1 I
1 I
I I
1 I
1 I
1 I
| functional test cases and assist quality :
: : : : S
: : engineers in automating Application I
= 1 . |
(IaC) IetplatesTornnUitni ot S e I Programming Interface (API), User Interface |
environments and ensure continuous I I
1 I
1 I
I I
1 I
1 I
1 I
I I
1 I
1 I
1 I
I I
1 I

S : : Ul), and performance testing usin
monitoring with anomaly detection. ol 2 - .

self-learning scripts that adapt to
application changes.

